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Overview
Motivation ObjectivesMotivation Objectives

• Electronic components have an increasingly 

critical role in on-board autonomous 

LRU: Power Controller • Identify new and unexplored fault modes 

and failure mechanismscritical role in on-board autonomous 

functions for vehicle controls, 

communications, navigation, and radar 

systems. Future aircraft systems will rely 

and failure mechanisms

• Identify precursors of failures in faulty 

components
systems. Future aircraft systems will rely 

more heavily on electric and electronic 

components

• To obtain an understanding of the behavior 

• Discover physics-of-failure models of the 

degradation process

• Predict the remaining useful life of 
• To obtain an understanding of the behavior 

of deteriorated components, as well as the 

capability to anticipate failures and predict 

• Predict the remaining useful life of 

components and embedded electronics 

based on physics-of-failure models and 

identification of precursors of failures
the remaining life of embedded electronics

• Investment in prognostics technologies can 

enable risk mitigation and increase reliability, 

Component:

IGBT

System: Aircraft

identification of precursors of failures

enable risk mitigation and increase reliability, 

while lowering cost for redundant systems
Images courtesy of Boeing

System: Aircraft

MethodologyMethodology
Aging and Characterization System 

• Enables aging and characterization of gate-controlled power transistors

• Supports thermal cycling, dielectric over-voltage, acute/chronic thermal stress, and 

Remaining Useful Life
• Provide health state indicators in a continuous manner 

through integration of model and feature-based • Supports thermal cycling, dielectric over-voltage, acute/chronic thermal stress, and 

current overstress

• In-situ state monitoring, including measurements of the steady-state and transient 

voltages and currents, and thermal transients at varying gate and drain voltage 

through integration of model and feature-based 

algorithms

• Update physics-based damage accumulation and aging 

models based on monitored features voltages and currents, and thermal transients at varying gate and drain voltage 

levels

models based on monitored features 

• Estimate health based on anticipated usage profile and 

execution of the damage propagation model
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Precursor of FailureResults
IGBT Experiments

• The average collector-emitter current was 
• A preliminary thermal overstress aging test was 

Failures
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Precursor of Failure

• The average collector-emitter current was 

monitor during the during the experiment 

in order to detect a latch-up condition

• Latch-up failure occurred at ~90 minutes 

• A preliminary thermal overstress aging test was 

conducted on IGBTs

• International Rectifier IRG4BC30KD with 600V/15A 

rating in a T0220 package
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180 min

150 min

• Latch-up failure occurred at ~90 minutes 

of aging. As a result, gate control was lost. 

In addition, the device was found to be 

functional after returning to room 

rating in a T0220 package

• The temperature was measured from the IGBT 

package without external heat

• The experiment was stopped after thermal runaway 
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110 min

65 min

30 min

The collector-emitter voltage turn-OFF transient 

11.5  
10000Degradation time (s)

functional after returning to room 

temperature

10

12

T = ~330C

• The experiment was stopped after thermal runaway 

or latch-up failure

• A hysteresis temperature controller was used to 

control the aging process switching the gate voltage

The collector-emitter voltage turn-OFF transient 

showed a significant decrease in its peak value 

with increase in temperature and aging time

9.5

10

10.5

11

11.5

S
w
it
c
h
in
g
 T
ra
n
s
ie
n
t 
p
e
a
k
(V
)

 

6000

7000

8000

9000

10000Degradation time (s)

6

8

10

C
o
lle
c
to
r-
E
m
it
te
r 
C
u
rr
e
n
t 
(A
) T = ~330C

Vc = 4v

Vg = 10v PWM / 10khz / 40% duty

control the aging process switching the gate voltage

• Aging experiment settings:

• Serial resistive load of 0.2 Ohms

• Gate driven by a PWM signal at 10V, 10KHz and 
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• Gate driven by a PWM signal at 10V, 10KHz and 

40% duty cycle

• Power supply at 4V on load circuit

• Temperature thresholds: Low=329oC, 

POC: Jose R. Celaya, �(650) 604-4596, � jcelaya@mail.arc.nasa.govwww.nasa.gov

326 326.5 327 327.5 328 328.5 329 329.5 330 330.5 331
7

temperature (C)

 

-90 -80 -70 -60 -50 -40 -30 -20 -10 0
0

time until failure (s)

• Temperature thresholds: Low=329 C, 

High=330oC, and Runaway= 340oC


